
Sancus: Low-cost trustworthy extensible networked
devices with a zero-software Trusted Computing Base

Job Noorman Pieter Agten Wilfried Daniels Raoul Strackx
Anthony Van Herrewege Christophe Huygens Bart Preneel

Ingrid Verbauwhede Frank Piessens

16 Aug 2013

Carna Botnet client distribution March to December 2012. ∼420K Clients

Noorman et al. Sancus 16 Aug 2013 2 / 29

Carna Botnet
Port scanning /0 using insecure embedded devices (Anonymous researcher)

Carna Botnet client distribution March to December 2012. ∼420K Clients
Noorman et al. Sancus 16 Aug 2013 2 / 29

Although very relevant,
low-end devices lack effective security features

More threats on embedded devices
Due to network connectivity and third-party extensibility

No effective solutions exist
It’s “a mess” (Viega and Thompson)

Researchers are exploring this area
E.g., SMART (El Defrawy et al.)

Noorman et al. Sancus 16 Aug 2013 3 / 29

Goal: design and implement a low-cost,
extensible security architecture

Strong isolation of software modules
Given third-party extensibility

Secure communication and attestation
Both locally and remotely

Counteracting attackers with full control over infrastructural software
Zero-software Trusted Computing Base

Noorman et al. Sancus 16 Aug 2013 4 / 29

Target: a generic system model

Infrastructure provider
IP owns and administers nodes Ni

Software providers
SPj wants to use the insfrastructure

Software modules
SMj,k is deployed by SPj on Ni

N1

N2

IP

SP1

SP2

...

SM1,1 SM2,1 · · ·

SM2,2 SMj ,k · · ·

...

Noorman et al. Sancus 16 Aug 2013 5 / 29

Example node configuration

Node

SMS

SM1

SMn

S

SP1

SPn

IP...
...

Noorman et al. Sancus 16 Aug 2013 6 / 29

Preview

1 Module isolation

2 Key management

3 Remote attestation and secure communication

4 Secure linking

5 Results

Noorman et al. Sancus 16 Aug 2013 7 / 29

Overview

1 Module isolation
Module layout
Access rights enforcement

2 Key management

3 Remote attestation and secure communication

4 Secure linking

5 Results

Noorman et al. Sancus 16 Aug 2013 8 / 29

Modules are bipartite with a
public text section and a protected data section

Public text section
Containing code and constants

Protected data section
Containing secret runtime data

Noorman et al. Sancus 16 Aug 2013 9 / 29

Node with one software module loaded

Unprotected

E
n

tr
y

p
oi

n
t

Code & constants Unprotected

SM1 text section

Protected data

SM1 protected data section

Unprotected

M
em

or
y

KN,SP,SM1
SM1 metadata

Layout Keys

Protected
storage
area

KN

Node

Noorman et al. Sancus 16 Aug 2013 10 / 29

Node with one software module loaded
Public and protected sections

Unprotected

E
n

tr
y

p
oi

n
t

Code & constants Unprotected

SM1 text section

Protected data

SM1 protected data section

Unprotected

M
em

or
y

KN,SP,SM1
SM1 metadata

Layout Keys

Protected
storage
area

KN

Node

Noorman et al. Sancus 16 Aug 2013 10 / 29

Node with one software module loaded
Module layout

Unprotected

E
n

tr
y

p
oi

n
t

Code & constants Unprotected

SM1 text section

Protected data

SM1 protected data section

Unprotected

M
em

or
y

KN,SP,SM1
SM1 metadata

Layout Keys

Protected
storage
area

KN

Node

Noorman et al. Sancus 16 Aug 2013 10 / 29

Node with one software module loaded
Module identity

Unprotected

E
n

tr
y

p
oi

n
t

Code & constants Unprotected

SM1 text section

Protected data

SM1 protected data section

Unprotected

M
em

or
y

KN,SP,SM1
SM1 metadata

Layout Keys

Protected
storage
area

KN

Node

Noorman et al. Sancus 16 Aug 2013 10 / 29

Node with one software module loaded
Module entry point

Unprotected

E
n

tr
y

p
oi

n
t

Code & constants Unprotected

SM1 text section

Protected data

SM1 protected data section

Unprotected

M
em

or
y

KN,SP,SM1
SM1 metadata

Layout Keys

Protected
storage
area

KN

Node

Noorman et al. Sancus 16 Aug 2013 10 / 29

Node with one software module loaded
Module keys

Unprotected

E
n

tr
y

p
oi

n
t

Code & constants Unprotected

SM1 text section

Protected data

SM1 protected data section

Unprotected

M
em

or
y

KN,SP,SM1
SM1 metadata

Layout Keys

Protected
storage
area

KN

Node

Noorman et al. Sancus 16 Aug 2013 10 / 29

Modules are isolated using
program-counter based memory access control

Variable access rights
Depending on the current program counter

Isolation of data
Only accessible from text section

Protection against code misuse (e.g., ROP)

Enter module through single entry point

From/to

Entry

Text Protected Unprotected

Entry r-x r-x rw- rwx

Text

r-x r-x rw- rwx

Other

r-x r-- --- rwx

Noorman et al. Sancus 16 Aug 2013 11 / 29

Modules are isolated using
program-counter based memory access control

Variable access rights
Depending on the current program counter

Isolation of data
Only accessible from text section

Protection against code misuse (e.g., ROP)

Enter module through single entry point

From/to

Entry

Text Protected Unprotected

Entry r-x r-x rw- rwx

Text

r-x r-x rw- rwx

Other

r-x r-- --- rwx

Noorman et al. Sancus 16 Aug 2013 11 / 29

Modules are isolated using
program-counter based memory access control

Variable access rights
Depending on the current program counter

Isolation of data
Only accessible from text section

Protection against code misuse (e.g., ROP)

Enter module through single entry point

From/to

Entry

Text Protected Unprotected

Entry r-x r-x rw- rwx

Text

r-x r-x rw- rwx

Other

r-x r-- --- rwx

Noorman et al. Sancus 16 Aug 2013 11 / 29

Modules are isolated using
program-counter based memory access control

Variable access rights
Depending on the current program counter

Isolation of data
Only accessible from text section

Protection against code misuse (e.g., ROP)

Enter module through single entry point

From/to

Entry

Text Protected Unprotected

Entry r-x r-x rw- rwx

Text

r-x r-x rw- rwx

Other

r-x r-- --- rwx

Noorman et al. Sancus 16 Aug 2013 11 / 29

Modules are isolated using
program-counter based memory access control

Variable access rights
Depending on the current program counter

Isolation of data
Only accessible from text section

Protection against code misuse (e.g., ROP)

Enter module through single entry point

From/to

Entry

Text Protected Unprotected

Entry r-x r-x rw- rwx

Text

r-x r-x

rw-

rwx

Other

r-x r--

rwx

Noorman et al. Sancus 16 Aug 2013 11 / 29

Modules are isolated using
program-counter based memory access control

Variable access rights
Depending on the current program counter

Isolation of data
Only accessible from text section

Protection against code misuse (e.g., ROP)

Enter module through single entry point

From/to

Entry

Text Protected Unprotected

Entry r-x r-x rw- rwx

Text

r-x

r-x rw-

rwx

Other

r-x

r-- ---

rwx

Noorman et al. Sancus 16 Aug 2013 11 / 29

Node with one software module loaded
Module entry point

Unprotected

E
n

tr
y

p
oi

n
t

Code & constants Unprotected

SM1 text section

Protected data

SM1 protected data section

Unprotected

M
em

or
y

KN,SP,SM1
SM1 metadata

Layout Keys

Protected
storage
area

KN

Node

Noorman et al. Sancus 16 Aug 2013 11 / 29

Modules are isolated using
program-counter based memory access control

Variable access rights
Depending on the current program counter

Isolation of data
Only accessible from text section

Protection against code misuse (e.g., ROP)
Enter module through single entry point

From/to

Entry

Text Protected Unprotected

Entry

r-x

r-x rw-

rwx

Text

r-x

r-x rw-

rwx

Other

r-x

r-- ---

rwx

Noorman et al. Sancus 16 Aug 2013 11 / 29

Modules are isolated using
program-counter based memory access control

Variable access rights
Depending on the current program counter

Isolation of data
Only accessible from text section

Protection against code misuse (e.g., ROP)
Enter module through single entry point

From/to Entry Text Protected Unprotected

Entry r-x r-x rw-

rwx

Text r-x r-x rw-

rwx

Other r-x r-- ---

rwx

Noorman et al. Sancus 16 Aug 2013 11 / 29

Modules are isolated using
program-counter based memory access control

Variable access rights
Depending on the current program counter

Isolation of data
Only accessible from text section

Protection against code misuse (e.g., ROP)
Enter module through single entry point

From/to Entry Text Protected Unprotected

Entry r-x r-x rw- rwx
Text r-x r-x rw- rwx
Other r-x r-- --- rwx

Noorman et al. Sancus 16 Aug 2013 11 / 29

Isolation can be enabled/disabled
using new instructions

protect layout, SP
Enables isolation at layout

and calculates KN,SP,SM

unprotect
Disables isolation of current SM

Noorman et al. Sancus 16 Aug 2013 12 / 29

Node with one software module loaded
Module layout

Unprotected

E
n

tr
y

p
oi

n
t

Code & constants Unprotected

SM1 text section

Protected data

SM1 protected data section

Unprotected

M
em

or
y

KN,SP,SM1
SM1 metadata

Layout Keys

Protected
storage
area

KN

Node

Noorman et al. Sancus 16 Aug 2013 12 / 29

Isolation can be enabled/disabled
using new instructions

protect layout, SP
Enables isolation at layout

and calculates KN,SP,SM

unprotect
Disables isolation of current SM

Noorman et al. Sancus 16 Aug 2013 12 / 29

Overview

1 Module isolation

2 Key management

3 Remote attestation and secure communication

4 Secure linking

5 Results

Noorman et al. Sancus 16 Aug 2013 13 / 29

Providing a flexible, inexpensive
way for secure communication

Establish a shared secret
Between SP and its module SM

Use symmetric crypto
Public-key is too expensive for low-cost nodes

Ability to deploy modules without IP intervening
After initial registration, that is

Noorman et al. Sancus 16 Aug 2013 14 / 29

Key derivation scheme allowing both
Sancus and SP’s to get the same key

IP

N1 N2

SP1 SP2

SM1 SM2 SM3

SP3

N3

Infrastructure provider is trusted party
Able to derive all keys

Every node N stores a key KN

Generated at random

Derived key based on SP ID
KSP = kdf(KN ,SP)

Derived key based on SM identity
KSM = kdf(KSP,SM)

Noorman et al. Sancus 16 Aug 2013 15 / 29

Key derivation scheme allowing both
Sancus and SP’s to get the same key

IP

N1 N2

SP1 SP2

SM1 SM2 SM3

SP3

N3

Infrastructure provider is trusted party
Able to derive all keys

Every node N stores a key KN

Generated at random

Derived key based on SP ID
KSP = kdf(KN ,SP)

Derived key based on SM identity
KSM = kdf(KSP,SM)

Noorman et al. Sancus 16 Aug 2013 15 / 29

Key derivation scheme allowing both
Sancus and SP’s to get the same key

IP

N1 N2

SP1 SP2

SM1 SM2 SM3

SP3

N3

Infrastructure provider is trusted party
Able to derive all keys

Every node N stores a key KN

Generated at random

Derived key based on SP ID
KSP = kdf(KN ,SP)

Derived key based on SM identity
KSM = kdf(KSP,SM)

Noorman et al. Sancus 16 Aug 2013 15 / 29

Key derivation scheme allowing both
Sancus and SP’s to get the same key

IP

N1 N2

SP1 SP2

SM1 SM2 SM3

SP3

N3

Infrastructure provider is trusted party
Able to derive all keys

Every node N stores a key KN

Generated at random

Derived key based on SP ID
KSP = kdf(KN ,SP)

Derived key based on SM identity
KSM = kdf(KSP,SM)

Noorman et al. Sancus 16 Aug 2013 15 / 29

Node with one software module loaded
Module identity

Unprotected

E
n

tr
y

p
oi

n
t

Code & constants Unprotected

SM1 text section

Protected data

SM1 protected data section

Unprotected

M
em

or
y

KN,SP,SM1
SM1 metadata

Layout Keys

Protected
storage
area

KN

Node

Noorman et al. Sancus 16 Aug 2013 15 / 29

Node with one software module loaded
Module keys

Unprotected

E
n

tr
y

p
oi

n
t

Code & constants Unprotected

SM1 text section

Protected data

SM1 protected data section

Unprotected

M
em

or
y

KN,SP,SM1
SM1 metadata

Layout Keys

Protected
storage
area

KN

Node

Noorman et al. Sancus 16 Aug 2013 15 / 29

Isolation can be enabled/disabled
using new instructions

protect layout, SP
Enables isolation at layout and calculates KN,SP,SM

unprotect
Disables isolation of current SM

Noorman et al. Sancus 16 Aug 2013 15 / 29

Overview

1 Module isolation

2 Key management

3 Remote attestation and secure communication
Key idea
Secure communication
Remote attestation

4 Secure linking

5 Results

Noorman et al. Sancus 16 Aug 2013 16 / 29

Ability to use KN,SP,SM proves the
integrity and isolation of SM deployed by SP on N

Only N and SP can calculate KN,SP,SM

N knows KN and SP knows KSP

KN,SP,SM is calculated after enabling isolation
No isolation, no key; no integrity, wrong key

Only SM on N is allowed to use KN,SP,SM

Enforced through special instructions

Noorman et al. Sancus 16 Aug 2013 17 / 29

Secure communication is provided by
calculating MACs using the module key

N

SP SM

No, I

Calculate OO,mac(KN,SP,SM,No |I |O)

Noorman et al. Sancus 16 Aug 2013 18 / 29

Secure communication is provided by
calculating MACs using the module key

N

SP SM
No, I

Calculate OO,mac(KN,SP,SM,No |I |O)

Noorman et al. Sancus 16 Aug 2013 18 / 29

Secure communication is provided by
calculating MACs using the module key

N

SP SM
No, I

Calculate O

O,mac(KN,SP,SM,No |I |O)

Noorman et al. Sancus 16 Aug 2013 18 / 29

Secure communication is provided by
calculating MACs using the module key

N

SP SM
No, I

Calculate OO,mac(KN,SP,SM,No |I |O)

MAC is calculated by a mac-seal instruction
Using the key of the calling SM

MAC can be recalculated by SP. . .
He knows the correct KN,SP,SM

. . . providing trust in the authenticity of messages
Only SM can create the correct MAC

Noorman et al. Sancus 16 Aug 2013 18 / 29

Secure communication is provided by
calculating MACs using the module key

N

SP SM
No, I

Calculate OO,mac(KN,SP,SM,No |I |O)

MAC is calculated by a mac-seal instruction
Using the key of the calling SM

MAC can be recalculated by SP. . .
He knows the correct KN,SP,SM

. . . providing trust in the authenticity of messages
Only SM can create the correct MAC

Noorman et al. Sancus 16 Aug 2013 18 / 29

Ability to use KN,SP,SM proves the
integrity and isolation of SM deployed by SP on N

Only N and SP can calculate KN,SP,SM

N knows KN and SP knows KSP

KN,SP,SM is calculated after enabling isolation
No isolation, no key; no integrity, wrong key

Only SM on N is allowed to use KN,SP,SM

Enforced through special instructions

Noorman et al. Sancus 16 Aug 2013 18 / 29

Secure communication is provided by
calculating MACs using the module key

N

SP SM
No, I

Calculate OO,mac(KN,SP,SM,No |I |O)

MAC is calculated by a mac-seal instruction
Using the key of the calling SM

MAC can be recalculated by SP. . .
He knows the correct KN,SP,SM

. . . providing trust in the authenticity of messages
Only SM can create the correct MAC

Noorman et al. Sancus 16 Aug 2013 18 / 29

Remote attestation is provided
through secure communication

N

SP SM
No, I

Calculate OO,mac(KN,SP,SM,No |I |O)

Attest integrity, isolation and liveliness
Of SM by SP

Integrity and isolation attested by MAC, liveliness by nonce
Thus included in secure communication

⇒ remote attestation ⊂ secure communication
So can be achieved more easily

Noorman et al. Sancus 16 Aug 2013 19 / 29

Remote attestation is provided
through secure communication

N

SP SM
No, I

Calculate OO,mac(KN,SP,SM,No |I |O)

Attest integrity, isolation and liveliness
Of SM by SP

Integrity and isolation attested by MAC, liveliness by nonce
Thus included in secure communication

⇒ remote attestation ⊂ secure communication
So can be achieved more easily

Noorman et al. Sancus 16 Aug 2013 19 / 29

Remote attestation is provided
through secure communication

N

SP SM
No, �AI

((((
((hhhhhhCalculate O��@@O,mac(KN,SP,SM,No��

�H
HH|I |O)

Attest integrity, isolation and liveliness
Of SM by SP

Integrity and isolation attested by MAC, liveliness by nonce
Thus included in secure communication

⇒ remote attestation ⊂ secure communication
So can be achieved more easily

Noorman et al. Sancus 16 Aug 2013 19 / 29

Overview

1 Module isolation

2 Key management

3 Remote attestation and secure communication

4 Secure linking
Goals
Verifying modules
Optimizing multiple calls

5 Results

Noorman et al. Sancus 16 Aug 2013 20 / 29

Enabling efficient and secure
local inter-module function calls

Verify the SM that is to be called
Is it the correct, isolated SM?

Inherently different from secure communication
May belong to different SPs; no shared secret

We can rely on protected local state
Gives rise to interesting optimizations

Noorman et al. Sancus 16 Aug 2013 21 / 29

Modules are verified by calculating
a MAC over their identity

Module A wants to call module B

A is deployed with a MAC of B’s identity using A’s key
In an unprotected section since it is unforgeable

A calculates the MAC of B’s actual identity
If they match B can safely be called

Done through new instruction: mac-verify
Need ensurance on B’s isolation

Noorman et al. Sancus 16 Aug 2013 22 / 29

Modules are verified by calculating
a MAC over their identity

Module A wants to call module B

A is deployed with a MAC of B’s identity using A’s key
In an unprotected section since it is unforgeable

A calculates the MAC of B’s actual identity
If they match B can safely be called

Done through new instruction: mac-verify
Need ensurance on B’s isolation

Noorman et al. Sancus 16 Aug 2013 22 / 29

Modules are verified by calculating
a MAC over their identity

Module A wants to call module B

A is deployed with a MAC of B’s identity using A’s key
In an unprotected section since it is unforgeable

A calculates the MAC of B’s actual identity
If they match B can safely be called

Done through new instruction: mac-verify
Need ensurance on B’s isolation

Noorman et al. Sancus 16 Aug 2013 22 / 29

The expensive MAC calculation
is needed only once

We only need to know if the same module is still there
After initial verification, that is

Sancus assigns unique IDs to modules
Never reused within a boot-cycle

mac-verify returns the ID of the verified module
Can be stored in the protected section

Later calls can use a new instruction: get-id
Check if the same module is still loaded

Noorman et al. Sancus 16 Aug 2013 23 / 29

The expensive MAC calculation
is needed only once

We only need to know if the same module is still there
After initial verification, that is

Sancus assigns unique IDs to modules
Never reused within a boot-cycle

mac-verify returns the ID of the verified module
Can be stored in the protected section

Later calls can use a new instruction: get-id
Check if the same module is still loaded

Noorman et al. Sancus 16 Aug 2013 23 / 29

Overview

1 Module isolation

2 Key management

3 Remote attestation and secure communication

4 Secure linking

5 Results
Hardware implementation
Module compilation
Evaluation

Noorman et al. Sancus 16 Aug 2013 24 / 29

Complete implementation of Sancus
based on the MSP430 architecture

Based on the openMSP430 project
Very mature open-source MSP430 implementation

Built on existing primitives:
I MAC: HMAC
I KDF: HKDF
I Hashing: spongent-128/128/8 (Bogdanov et al.)

Usable in RTL simulator and FPGA
For easy testability of Sancus

Noorman et al. Sancus 16 Aug 2013 25 / 29

Automatically handling the intricacies
of compiling Sancus modules

Placing the runtime stack in the protected section
Prevent access by untrusted code

Clearing registers on module exit
Prevent data leakage

Supporting more than one entry point
Dispatching through a single entry point

Noorman et al. Sancus 16 Aug 2013 26 / 29

Automatically handling the intricacies
of compiling Sancus modules

#include <sancus/sm_support.h>
#define ID "foo"

int SM_DATA(ID) protected_data;
void SM_FUNC(ID) internal_function() {/*...*/}
void SM_ENTRY(ID) entry_point() {/*...*/}

Noorman et al. Sancus 16 Aug 2013 26 / 29

No runtime overhead on “normal” code;
moderate overhead given enough computation

No impact on maximum frequency
Critical path not affected

Main overhead from calculating MACs
For verification and output

Smaller overhead from entry and exit code
Stack switching, register clearing,. . .

Noorman et al. Sancus 16 Aug 2013 27 / 29

Example node configuration

Node

SMS

SM1

SMn

S

SP1

SPn

IP...
...

Noorman et al. Sancus 16 Aug 2013 27 / 29

No runtime overhead on “normal” code;
moderate overhead given enough computation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

·104

100

101

102

Cycles

O
ve

rh
ea

d

1st run
nth run

Noorman et al. Sancus 16 Aug 2013 27 / 29

Area overhead

Fixed overhead: 586 registers / 1, 138 LUTs
Mainly MAC and KDF

Per module: 213 registers / 307 LUTs
Mainly key storage

Noorman et al. Sancus 16 Aug 2013 28 / 29

Review

1 Module isolation
Isolation using program-counter based access control

2 Key management
Hierarchical scheme with keys based on module’s identity

3 Remote attestation and secure communication
Attestation based on the ability to use a key

4 Secure linking
Module verification based on MAC of its identity

5 Results
Simulator, FPGA and automatic compilation

Noorman et al. Sancus 16 Aug 2013 29 / 29

Sancus: Low-cost trustworthy extensible networked
devices with a zero-software Trusted Computing Base

Job Noorman Pieter Agten Wilfried Daniels Raoul Strackx
Anthony Van Herrewege Christophe Huygens Bart Preneel

Ingrid Verbauwhede Frank Piessens

https://distrinet.cs.kuleuven.be/software/sancus/

https://distrinet.cs.kuleuven.be/software/sancus/

	Module isolation
	Module layout
	Access rights enforcement

	Key management
	Remote attestation and secure communication
	Key idea
	Secure communication
	Remote attestation

	Secure linking
	Goals
	Verifying modules
	Optimizing multiple calls

	Results
	Hardware implementation
	Module compilation
	Evaluation

