
  

Don't Give Credit:
Hacking Arcade Machines



  

Who am I?

● Ronald Huizer
● Senior Security Researcher, Immunity, Inc.
● ronald@immunityinc.com
● I enjoy computer science, toying with 

hardware, go, a whole lot of japanese 
cartoons and computer games.

mailto:ronald@immunityinc.com


  

Who am I?

● Ronald Huizer
● Senior Security Researcher, Immunity, Inc.
● ronald@immunityinc.com
● I enjoy computer science, toying with 

hardware, go, a whole lot of japanese 
cartoons and computer games.

Who I am

mailto:ronald@immunityinc.com


  

Who am I?

● Ronald Huizer
● Senior Security Researcher, Immunity, Inc.
● ronald@immunityinc.com
● I enjoy computer science, toying with 

hardware, go, a whole lot of japanese 
cartoons and computer games.

Who I am Whom I'd like to be.

mailto:ronald@immunityinc.com


  

Attacking Arcade Machines

● Why attack arcade machines?
● Fun and free plays.
● Not so much profit, unless you play a lot.
● Living one of my childhood dreams.
● Both the vulnerability and the talk are quite 

simple.
● This is meant to be fun and practical.



  

Attack Surface (1)

● Almost all attacks will need physical access.
● We need to make a distinction

● Obvious attacks such as opening the machine, or 
attaching odd peripherals and rebooting it.

● Non-obvious attacks that resemble normal use. 
These are probably impossible on many older 
arcade machines.



  

Attack Surface (2)

● The obvious attacks won't work, as we'll get 
kicked out of the arcade or worse.

● We want to be less conspicuous than this:



  

Attack Surface (3)

● Modern arcade machines often allow for 
transferable profiles stored on portable devices.
● Magnetic cards
● Konami e-AMUSEMENT smart card
● USB dongles
● Probably more schemes, especially in Japan.

● This gives us more attack surface using either 
malicious hardware devices, or by malicious 
data on official devices.



  

Attack Surface (4)

● We pick the easiest attack surface.
● Consider game profiles loaded from and stored 

to USB dongle.
● If profile handling is done wrong, we can simply 

insert a USB dongle with malicious payload.
● Very covert: inserting a dongle is a common task 

performed by many players, and won't attract 
unwanted attention.



  

Attack Surface (4)

● We pick the easiest attack surface.
● Consider game profiles loaded from and stored 

to USB dongle.
● If profile handling is done wrong, we can simply 

insert a USB dongle with malicious payload.
● Very covert: inserting a dongle is a common task 

performed by many players, and won't attract 
unwanted attention.

Attack here.



  

Attack Surface (4)

● We pick the easiest attack surface.
● Consider game profiles loaded from and stored 

to USB dongle.
● If profile handling is done wrong, we can simply 

insert a USB dongle with malicious payload.
● Very covert: inserting a dongle is a common task 

performed by many players, and won't attract 
unwanted attention.

Attack here.Not here.



  

What are we attacking?

● In The Groove 2
● Dancing simulator made 

by RoXoR games.
● Uses USB dongles to 

store profiles.



  

What are we attacking?

● In The Groove 2
● Dancing simulator made 

by RoXoR games.
● Uses USB dongles to 

store profiles.
● Allows geeks to dance 

like Michael Jackson.



  

What do we know? (1)

● There is a PC as well as an arcade version.
● We'll use ITG2PC and ITG2AC for these versions.
● We can tinker with the PC version easily and test 

our ideas.
● After testing them on ITG2PC, we try ITG2AC.

● ITG2AC is running on x86-32 Linux.
● Most of us will be in our comfort zone.



  

What do we know? (2)

● ITG2 software based on a modified version of 
StepMania, an open source dancing simulator.
● Allows for easier reverse engineering.

● There is an open source project dedicated to 
reimplementing the game.
● OpenITG did an excellent job at reversing and 

reimplementing parts of the game.



  

What is on the USB stick?

● Edits of existing songs on the machine.
● Custom songs (needs to be enabled).
● Signed screenshots (to prove scores).
● Signed score profile and backups.

● Stats.xml / Stats.xml.sig / DontShare.sig

● Song catalogues, preferences, etc.
● ITG2AC and ITG2PC sticks are not portable

● Because the signing keys differ.



  

Stats.xml: user profile data

● XML formatted file.

<?xml version="1.0" encoding="UTF-8" ?>
<?xml-stylesheet type="text/xsl" href="Stats.xsl"?>

<Stats>
<CalorieData>
<CaloriesBurned Date='2005-02-26' 
>468.587524</CaloriesBurned>
</CalorieData>
<CategoryScores/>
...
<Data>
local tab1 = { }
return tab1
</Data>
...



  

Stats.xml: user profile data

● XML formatted file.

<?xml version="1.0" encoding="UTF-8" ?>
<?xml-stylesheet type="text/xsl" href="Stats.xsl"?>

<Stats>
<CalorieData>
<CaloriesBurned Date='2005-02-26' 
>468.587524</CaloriesBurned>
</CalorieData>
<CategoryScores/>
...
<Data>
local tab1 = { }
return tab1
</Data>
...

What reading XML does to people.



  

XML parser flaws

● XNode::LoadAttributes() has issues.
● It will scan past 0-byte if there is a double or 

single quote character before it.
● tcsskip() and tcsechr() are scary, as they 

always return a non-NULL pointer.
● Lots of over-indexed reads, but hard to find 

over-indexed writes.
● Need a better bug.



  

XML parser flaws

● XNode::LoadAttributes() has issues.
● It will scan past 0-byte if there is a double or 

single quote character before it.
● tcsskip() and tcsechr() are scary, as they 

always return a non-NULL pointer.
● Lots of over-indexed reads, but hard to find 

over-indexed writes.
● Need a better bug. This is not a good bug.



  

User profile loading flaws (1)

● Profile::LoadGeneralDataFromNode() reads 
XML data from the XML tree, and deserializes.

● Lot of uninteresting numeric and string entries.
● The <Data> tag seems interesting, as it 

contains embedded LUA data.
● It is only handled for IsMachine() profiles, which 

are stored on the arcade machine itself.



  

User profile loading flaws (1)

● Profile::LoadGeneralDataFromNode() reads 
XML data from the XML tree, and deserializes.

● Lot of uninteresting numeric and string entries.
● The <Data> tag seems interesting, as it 

contains embedded LUA data.
● It is only handled for IsMachine() profiles, which 

are stored on the arcade machine itself.
● Are they really?



  

User profile loading flaws (2)

● In OpenITG there is an IsMachine() check.
● Not so in R21 and R23!

  v29 = GetChildValue(a3, "Data");
  if ( v29 )
  {
    string_constructor(v29, &sData);
    LoadFromString(a2 + 5000, (int)&sData);
    if ( GetLuaType(a2 + 5000) != LUA_TTABLE )
    {
      Warn((int)LOG, "Profile data did not evaluate to a table");
      sub_84C3C80(*(_DWORD *)LuaHelpers);
      sub_81C2870(a2 + 5000);
    }
  }



  

Creating a rogue profile

● We have found a way to inject LUA code.
● There's still more work to be done:

● Signing profiles with malicious LUA code.
– This requires the signing keys.

● Finding out what LUA code we can use.
– Is there a LUA sandbox?
– Can we escalate to root on the machine?
– Do we actually need to? What can we do otherwise?



  

Signing profiles (1)

● Profile signing is done using RSA and SHA1.
● Original implementation using crypto++.
● Signing: S(k-, p) = E(k-, h(p))
● Verification: D(k+, S(k-, p)) should be h(p).
● Reimplemented this using OpenSSL, as 

crypto++ is complicated to use.
● Command line OpenSSL also works.



  

Signing profiles (2)

● What is signed?
● Stats.xml with the result in Stats.xml.sig
● Stats.xml.sig with the result in DontShare.sig

● This double signature is done so people can 
share verified (machine signed) scores, without 
their profile being copied.

● You would share Stats.xml and Stats.xml.sig 
but not DontShare.sig



  

Signing profiles (3)

● We obviously want the private key.
● ITG2 signs profiles every time someone plays.
● Private key needs to be known to the program.
● Profiles need to be transferable.

● So the signing keys are shared!

● No revocation scheme in place.
● Once we leak one key, we're set!



  

OpenSSL signing / verifying

● openssl dgst -keyform DER -sign private.rsa -out 
Stats.xml.sig Stats.xml

openssl dgst -keyform DER -sign private.rsa -out 
DontShare.sig Stats.xml.sig

● openssl dgst -keyform DER -verify public.rsa 
-signature DontShare.sig Stats.xml.sig

openssl dgst -keyform DER -verify public.rsa 
-signature Stats.xml.sig Stats.xml



  

OpenSSL DER to PEM

● Private key is in PKCS8 DER form.

openssl  pkcs8 -in private.rsa -inform DER -outform 
PEM -out private.pem -nocrypt

● Public key is in RSA DER form.

openssl rsa -in public.rsa -inform DER -pubin -pubout 
-outform PEM -out public.pem



  

ITG2PC 

● The private keys are simply installed.
● They obviously differ from the ITG2AC keys.
● Look for the *.rsa files.
● They come in PKCS #1 / PKCS #8 forms.

A key!



  

ITG2AC

● Dumping the private keys more complicated.
● We need to crack open the machine first.

● Attach USB keyboard and Linux disk.
● Rebooting the machine.
● Enter + configure BIOS to boot from disk.
● Mount the ITG2 XFS filesystem and have at it.
● Will not work on R23, as it rewrites the BIOS 

password using nvram.ko



  

ITG2AC (2)

● We were unable to find the keys on disk.
● /itgdata contains several crypted blobs: 

data0.zip through data4.zip and patch.zip.
● The keys are most likely in there, as well as the 

songs and so on.
● We need a way to decrypt those files.



  

ITG2AC file encryption

● The core algorithm uses SHA-512 and AES-
192 in CBC mode.

● The AES keys are managed in two ways.
● Patch files use a static key, probably because it is 

easier to deliver patches.
● The core data files all have unique keys, which 

differ on all arcade machines. These are managed 
by a hardware security dongle.



  

Encrypted file header (1)

struct itg2_file_header

{

        char          magic[2];

        uint32_t      file_size;

        uint32_t      subkey_size;

        uint8_t       *subkey;

        uint8_t       verify_block[16];

};



  

Encrypted file header (2)

● Magic will be :| for data files and 8O for patch 
files.

● file_size is the size of the decrypted file, so that 
padding to blocksize can be ignored.

● subkey_size is the size of the subkey.
● subkey is the size of subkey data.
● verify_block is a block of encrypted static data 

to determine if a valid key was provided.



  

File decryption algorithm (1)

● AES-192 keying is used. How these keys are 
derived we will see later.

● Remember that AES works on 16 byte blocks.
● File is partitioned in blocks of 255 AES blocks.
● Each of these blocks is encrypted using AES in 

CBC mode.
● The IV is manipulated before every encryption, 

by subtracting 0 through 16 from IV elements.



  

File decryption algorithm (2)

● Why does it work like this?
● CBC mode is quirky for file encryption.
● If we encrypt the full file in CBC mode, a single 

corruption in the worst case will ruin the entire 
file.

● When partitioning in blocks a single corruption 
in the worst case ruins the block.

奇々怪界 : This game is underrated.



  

File decryption algorithm (3)

● We get IV repetition per block of 255 blocks. 
This is a slight weakness, but not fatal for CBC.

● Why they modify the IV is unclear to me.
● It causes some additional confusion, and it 

does not introduce additional duplicates, so it is 
probably alright.



  

AES key recovery (1)

● The AES key for patch files is created running a 
function similar to SHA512-HMAC.

● It is not a real HMAC, as there is no ipad/opad 
or key compression performed, but simply 
does: SHA512(m || k)

● The message is the subkey from the file 
header.

● The key can be recovered by reverse 
engineering (or reading the OpenITG code).



  

AES key recovery (2)

● The AES keys to the data files are stored on an 
security dongle.

● The dongle is an iButton DS1963S which is 
used as a SHA-512 HMAC co-processor to 
deliver the AES keys.

● We don't need the DS1963S secret keys: we 
can recover the AES key for specific data files.

Fu fu fu, enough crypto already.



  

DS1963S architecture

● The dongle is connected to the RS232 port of 
the machine.

● It communicates through a bus protocol called 
1-Wire so that the master can communicate 
with multiple slaves.

● There is a public domain kit available to 
communicate with the dongle.



  

DS1963S memory

● There are 16 256-bit data pages.
● There are 2 pages holding 4 64-bit secrets 

each. These are writable, but not readable.
● Reading the secret pages would break DS1963S 

security, but we do not need to do this for 
decrypting the data files.

● There is a 256-bit scratch pad used for reliable 
transfers from master to slave memory.



  

DS1963S registers

● TA1 and TA2 hold the LSB and MSB of  the 
target address used in many operations.

● E/S is a read-only counter and status register
● Bits[0..4]: The ending offset; it holds the last offset 

into the scratch pad that was written to.
● Bits[5]: The partial flag (PF); set to 1 when the bits 

sent by the master are not a multiple of 8.
● Bits[6]: Unused; should be 0.
● Bits[7]: Authorization Accepted (AA); set to 1 when 

the scratchpad has been copied to memory.



  

DS1963S reliable write (1)

● [0xC3] [TA1] [TA2]

Erase the scratchpad, filling it with 0xFF. TA is 
ignored. Clear HIDE flag.

● [0x0F] [TA1] [TA2] [DATA ...] [CRC16]

Write data to the scratchpad, from the byte offset to 
the ending offset. If the ending offset is 0x1F, the 
slave sends back the CRC16 of data read.

● [0xAA]

Read scratchpad. Slave sends back the byte offset, 
the ending offset, and the scratchpad area for 
those, and ~CRC16.



  

DS1963S reliable write (2)

● Comparing the data written to the data read 
guarantees (almost) no distortions.

● From scratchpad we can then write into data 
pages and secrets pages.

● All this is performed by the public domain API 
function WriteDataPageSHA18().



  

DS1963S SHA functions

● There are multiple SHA functions.
● We will only look at the one relevant to 

ITG2AC.
● [0x33] [0xC3] SHA-1 sign data.

● Signs data page 0 or 8 with the secret number 0 or 
8, and data from the scratchpad.

● This is used to generate the AES key from the 
subkey data in the file header.



  

DS1963S security (1)

● Secret page security demonstrated broken by 
Christian Brandt at CCC 2010 through faulting.

● Using real crypto does not make devices 
secure.



  

DS1963S security (1)

● Secret page security demonstrated broken by 
Christian Brandt at CCC 2010 through faulting.

● Using real crypto does not make devices 
secure.

Would you rather attack SHA-1?



  

DS1963S security (1)

● Secret page security demonstrated broken by 
Christian Brandt at CCC 2010 through faulting.

● Using real crypto does not make devices 
secure.

Would you rather attack SHA-1?

Or the DS1963S protocols?



  

DS1963S security (2)

● An untesteduntested idea to dump secrets.
● The scratchpad and memory do not have to be 

written in 32-byte blocks.
– We can write smaller quantities, like 1 or 2 bytes.

● The Copy Scratchpad command can write secret 
pages directly.
– We just can't read secret pages.

● Partial secret overwrite may be possible?
– Use Sign data page (SDP) with original secret.
– Now overwrite 1 byte, and SDP again until correct byte 

has been found.
– Repeat: complexity now O(256*8) instead of O(256**8).



  

DS1963S demonstration



  

DS1963S demonstration

This octopus is funnier than Cthulhu.



  

File decryption

● We can now use the DS1963S keys to decrypt 
the encrypted files.

● This opens the door for unauthorized copying of 
the game content...
● Keep in mind that ITG2PC had no DRM 

whatsoever, so it is of minimal concern.

● It also allows us to use the original files portably 
in other projects. Think of OpenITG.



  

Signing key recovery

● We can now find the profile signing key by 
decrypting and unpacking data4.zip.

● The keys are in Data/private.rsa and 
Data/public.rsa.



  

Using LUA

● So we can get LUA code executed by signing 
profiles with embedded code.

● The LUA environment is sandboxed, there is no 
support for the os module and so on.

● This means we cannot execute arbitrary code 
on the machine.

● We can execute the LUA bindings the game 
provides, and change game state.

● This is what we want anyway really.



  

LUA game commands

● A brief stepmania reference can be found 
online at: 
http://www.stepmania.com/wiki/Lua_scripting_and_Actor_commands

● It differs from the commands in R21, and R23, 
but there are many similarities.

● GameState.cpp implements 
ApplyGameCommand() which has some 
interesting primitives.

● GameCommand.cpp implements these 
primitives.

http://www.stepmania.com/wiki/Lua_scripting_and_Actor_commands


  

LUA game commands (2)

● The one I was looking for as a kid:

GAMESTATE:ApplyGameCommand('insertcredit')

● Signing a profile using this command and using 
it indeed leads to a free credit.

● The profile loader needs to be invoked, so we 
need to use one credit to get the rest for free.



  

Further escalation

● We would need to break the LUA sandbox.
● We have several flaws, but they are complicated.
● What more do we want anyway?

– We can play for free.
– We can unlock songs.
– We can transfer scores to the machine.
– We do not want to mess it up: the sandbox is nice.



  

Demonstration



  

 

Questions? Kupo?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

