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Attacking Arcade Machines

● Why attack arcade machines?
● Fun and free plays.
● Not so much profit, unless you play a lot.
● Living one of my childhood dreams.
● Both the vulnerability and the talk are quite 

simple.
● This is meant to be fun and practical.



  

Attack Surface (1)

● Almost all attacks will need physical access.
● We need to make a distinction

● Obvious attacks such as opening the machine, or 
attaching odd peripherals and rebooting it.

● Non-obvious attacks that resemble normal use. 
These are probably impossible on many older 
arcade machines.



  

Attack Surface (2)

● The obvious attacks won't work, as we'll get 
kicked out of the arcade or worse.

● We want to be less conspicuous than this:



  

Attack Surface (3)

● Modern arcade machines often allow for 
transferable profiles stored on portable devices.
● Magnetic cards
● Konami e-AMUSEMENT smart card
● USB dongles
● Probably more schemes, especially in Japan.

● This gives us more attack surface using either 
malicious hardware devices, or by malicious 
data on official devices.



  

Attack Surface (4)

● We pick the easiest attack surface.
● Consider game profiles loaded from and stored 

to USB dongle.
● If profile handling is done wrong, we can simply 

insert a USB dongle with malicious payload.
● Very covert: inserting a dongle is a common task 

performed by many players, and won't attract 
unwanted attention.
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What are we attacking?

● In The Groove 2
● Dancing simulator made 

by RoXoR games.
● Uses USB dongles to 

store profiles.



  

What are we attacking?

● In The Groove 2
● Dancing simulator made 

by RoXoR games.
● Uses USB dongles to 

store profiles.
● Allows geeks to dance 

like Michael Jackson.



  

What do we know? (1)

● There is a PC as well as an arcade version.
● We'll use ITG2PC and ITG2AC for these versions.
● We can tinker with the PC version easily and test 

our ideas.
● After testing them on ITG2PC, we try ITG2AC.

● ITG2AC is running on x86-32 Linux.
● Most of us will be in our comfort zone.



  

What do we know? (2)

● ITG2 software based on a modified version of 
StepMania, an open source dancing simulator.
● Allows for easier reverse engineering.

● There is an open source project dedicated to 
reimplementing the game.
● OpenITG did an excellent job at reversing and 

reimplementing parts of the game.



  

What is on the USB stick?

● Edits of existing songs on the machine.
● Custom songs (needs to be enabled).
● Signed screenshots (to prove scores).
● Signed score profile and backups.

● Stats.xml / Stats.xml.sig / DontShare.sig

● Song catalogues, preferences, etc.
● ITG2AC and ITG2PC sticks are not portable

● Because the signing keys differ.



  

Stats.xml: user profile data

● XML formatted file.

<?xml version="1.0" encoding="UTF-8" ?>
<?xml-stylesheet type="text/xsl" href="Stats.xsl"?>

<Stats>
<CalorieData>
<CaloriesBurned Date='2005-02-26' 
>468.587524</CaloriesBurned>
</CalorieData>
<CategoryScores/>
...
<Data>
local tab1 = { }
return tab1
</Data>
...
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What reading XML does to people.



  

XML parser flaws

● XNode::LoadAttributes() has issues.
● It will scan past 0-byte if there is a double or 

single quote character before it.
● tcsskip() and tcsechr() are scary, as they 

always return a non-NULL pointer.
● Lots of over-indexed reads, but hard to find 

over-indexed writes.
● Need a better bug.
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User profile loading flaws (1)

● Profile::LoadGeneralDataFromNode() reads 
XML data from the XML tree, and deserializes.

● Lot of uninteresting numeric and string entries.
● The <Data> tag seems interesting, as it 

contains embedded LUA data.
● It is only handled for IsMachine() profiles, which 

are stored on the arcade machine itself.



  

User profile loading flaws (1)

● Profile::LoadGeneralDataFromNode() reads 
XML data from the XML tree, and deserializes.

● Lot of uninteresting numeric and string entries.
● The <Data> tag seems interesting, as it 

contains embedded LUA data.
● It is only handled for IsMachine() profiles, which 

are stored on the arcade machine itself.
● Are they really?



  

User profile loading flaws (2)

● In OpenITG there is an IsMachine() check.
● Not so in R21 and R23!

  v29 = GetChildValue(a3, "Data");
  if ( v29 )
  {
    string_constructor(v29, &sData);
    LoadFromString(a2 + 5000, (int)&sData);
    if ( GetLuaType(a2 + 5000) != LUA_TTABLE )
    {
      Warn((int)LOG, "Profile data did not evaluate to a table");
      sub_84C3C80(*(_DWORD *)LuaHelpers);
      sub_81C2870(a2 + 5000);
    }
  }



  

Creating a rogue profile

● We have found a way to inject LUA code.
● There's still more work to be done:

● Signing profiles with malicious LUA code.
– This requires the signing keys.

● Finding out what LUA code we can use.
– Is there a LUA sandbox?
– Can we escalate to root on the machine?
– Do we actually need to? What can we do otherwise?



  

Signing profiles (1)

● Profile signing is done using RSA and SHA1.
● Original implementation using crypto++.
● Signing: S(k-, p) = E(k-, h(p))
● Verification: D(k+, S(k-, p)) should be h(p).
● Reimplemented this using OpenSSL, as 

crypto++ is complicated to use.
● Command line OpenSSL also works.



  

Signing profiles (2)

● What is signed?
● Stats.xml with the result in Stats.xml.sig
● Stats.xml.sig with the result in DontShare.sig

● This double signature is done so people can 
share verified (machine signed) scores, without 
their profile being copied.

● You would share Stats.xml and Stats.xml.sig 
but not DontShare.sig



  

Signing profiles (3)

● We obviously want the private key.
● ITG2 signs profiles every time someone plays.
● Private key needs to be known to the program.
● Profiles need to be transferable.

● So the signing keys are shared!

● No revocation scheme in place.
● Once we leak one key, we're set!



  

OpenSSL signing / verifying

● openssl dgst -keyform DER -sign private.rsa -out 
Stats.xml.sig Stats.xml

openssl dgst -keyform DER -sign private.rsa -out 
DontShare.sig Stats.xml.sig

● openssl dgst -keyform DER -verify public.rsa 
-signature DontShare.sig Stats.xml.sig

openssl dgst -keyform DER -verify public.rsa 
-signature Stats.xml.sig Stats.xml



  

OpenSSL DER to PEM

● Private key is in PKCS8 DER form.

openssl  pkcs8 -in private.rsa -inform DER -outform 
PEM -out private.pem -nocrypt

● Public key is in RSA DER form.

openssl rsa -in public.rsa -inform DER -pubin -pubout 
-outform PEM -out public.pem



  

ITG2PC 

● The private keys are simply installed.
● They obviously differ from the ITG2AC keys.
● Look for the *.rsa files.
● They come in PKCS #1 / PKCS #8 forms.

A key!



  

ITG2AC

● Dumping the private keys more complicated.
● We need to crack open the machine first.

● Attach USB keyboard and Linux disk.
● Rebooting the machine.
● Enter + configure BIOS to boot from disk.
● Mount the ITG2 XFS filesystem and have at it.
● Will not work on R23, as it rewrites the BIOS 

password using nvram.ko



  

ITG2AC (2)

● We were unable to find the keys on disk.
● /itgdata contains several crypted blobs: 

data0.zip through data4.zip and patch.zip.
● The keys are most likely in there, as well as the 

songs and so on.
● We need a way to decrypt those files.



  

ITG2AC file encryption

● The core algorithm uses SHA-512 and AES-
192 in CBC mode.

● The AES keys are managed in two ways.
● Patch files use a static key, probably because it is 

easier to deliver patches.
● The core data files all have unique keys, which 

differ on all arcade machines. These are managed 
by a hardware security dongle.



  

Encrypted file header (1)

struct itg2_file_header

{

        char          magic[2];

        uint32_t      file_size;

        uint32_t      subkey_size;

        uint8_t       *subkey;

        uint8_t       verify_block[16];

};



  

Encrypted file header (2)

● Magic will be :| for data files and 8O for patch 
files.

● file_size is the size of the decrypted file, so that 
padding to blocksize can be ignored.

● subkey_size is the size of the subkey.
● subkey is the size of subkey data.
● verify_block is a block of encrypted static data 

to determine if a valid key was provided.



  

File decryption algorithm (1)

● AES-192 keying is used. How these keys are 
derived we will see later.

● Remember that AES works on 16 byte blocks.
● File is partitioned in blocks of 255 AES blocks.
● Each of these blocks is encrypted using AES in 

CBC mode.
● The IV is manipulated before every encryption, 

by subtracting 0 through 16 from IV elements.



  

File decryption algorithm (2)

● Why does it work like this?
● CBC mode is quirky for file encryption.
● If we encrypt the full file in CBC mode, a single 

corruption in the worst case will ruin the entire 
file.

● When partitioning in blocks a single corruption 
in the worst case ruins the block.

奇々怪界 : This game is underrated.



  

File decryption algorithm (3)

● We get IV repetition per block of 255 blocks. 
This is a slight weakness, but not fatal for CBC.

● Why they modify the IV is unclear to me.
● It causes some additional confusion, and it 

does not introduce additional duplicates, so it is 
probably alright.



  

AES key recovery (1)

● The AES key for patch files is created running a 
function similar to SHA512-HMAC.

● It is not a real HMAC, as there is no ipad/opad 
or key compression performed, but simply 
does: SHA512(m || k)

● The message is the subkey from the file 
header.

● The key can be recovered by reverse 
engineering (or reading the OpenITG code).



  

AES key recovery (2)

● The AES keys to the data files are stored on an 
security dongle.

● The dongle is an iButton DS1963S which is 
used as a SHA-512 HMAC co-processor to 
deliver the AES keys.

● We don't need the DS1963S secret keys: we 
can recover the AES key for specific data files.

Fu fu fu, enough crypto already.



  

DS1963S architecture

● The dongle is connected to the RS232 port of 
the machine.

● It communicates through a bus protocol called 
1-Wire so that the master can communicate 
with multiple slaves.

● There is a public domain kit available to 
communicate with the dongle.



  

DS1963S memory

● There are 16 256-bit data pages.
● There are 2 pages holding 4 64-bit secrets 

each. These are writable, but not readable.
● Reading the secret pages would break DS1963S 

security, but we do not need to do this for 
decrypting the data files.

● There is a 256-bit scratch pad used for reliable 
transfers from master to slave memory.



  

DS1963S registers

● TA1 and TA2 hold the LSB and MSB of  the 
target address used in many operations.

● E/S is a read-only counter and status register
● Bits[0..4]: The ending offset; it holds the last offset 

into the scratch pad that was written to.
● Bits[5]: The partial flag (PF); set to 1 when the bits 

sent by the master are not a multiple of 8.
● Bits[6]: Unused; should be 0.
● Bits[7]: Authorization Accepted (AA); set to 1 when 

the scratchpad has been copied to memory.



  

DS1963S reliable write (1)

● [0xC3] [TA1] [TA2]

Erase the scratchpad, filling it with 0xFF. TA is 
ignored. Clear HIDE flag.

● [0x0F] [TA1] [TA2] [DATA ...] [CRC16]

Write data to the scratchpad, from the byte offset to 
the ending offset. If the ending offset is 0x1F, the 
slave sends back the CRC16 of data read.

● [0xAA]

Read scratchpad. Slave sends back the byte offset, 
the ending offset, and the scratchpad area for 
those, and ~CRC16.



  

DS1963S reliable write (2)

● Comparing the data written to the data read 
guarantees (almost) no distortions.

● From scratchpad we can then write into data 
pages and secrets pages.

● All this is performed by the public domain API 
function WriteDataPageSHA18().



  

DS1963S SHA functions

● There are multiple SHA functions.
● We will only look at the one relevant to 

ITG2AC.
● [0x33] [0xC3] SHA-1 sign data.

● Signs data page 0 or 8 with the secret number 0 or 
8, and data from the scratchpad.

● This is used to generate the AES key from the 
subkey data in the file header.



  

DS1963S security (1)

● Secret page security demonstrated broken by 
Christian Brandt at CCC 2010 through faulting.

● Using real crypto does not make devices 
secure.
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DS1963S security (1)

● Secret page security demonstrated broken by 
Christian Brandt at CCC 2010 through faulting.

● Using real crypto does not make devices 
secure.

Would you rather attack SHA-1?

Or the DS1963S protocols?



  

DS1963S security (2)

● An untesteduntested idea to dump secrets.
● The scratchpad and memory do not have to be 

written in 32-byte blocks.
– We can write smaller quantities, like 1 or 2 bytes.

● The Copy Scratchpad command can write secret 
pages directly.
– We just can't read secret pages.

● Partial secret overwrite may be possible?
– Use Sign data page (SDP) with original secret.
– Now overwrite 1 byte, and SDP again until correct byte 

has been found.
– Repeat: complexity now O(256*8) instead of O(256**8).



  

DS1963S demonstration



  

DS1963S demonstration

This octopus is funnier than Cthulhu.



  

File decryption

● We can now use the DS1963S keys to decrypt 
the encrypted files.

● This opens the door for unauthorized copying of 
the game content...
● Keep in mind that ITG2PC had no DRM 

whatsoever, so it is of minimal concern.

● It also allows us to use the original files portably 
in other projects. Think of OpenITG.



  

Signing key recovery

● We can now find the profile signing key by 
decrypting and unpacking data4.zip.

● The keys are in Data/private.rsa and 
Data/public.rsa.



  

Using LUA

● So we can get LUA code executed by signing 
profiles with embedded code.

● The LUA environment is sandboxed, there is no 
support for the os module and so on.

● This means we cannot execute arbitrary code 
on the machine.

● We can execute the LUA bindings the game 
provides, and change game state.

● This is what we want anyway really.



  

LUA game commands

● A brief stepmania reference can be found 
online at: 
http://www.stepmania.com/wiki/Lua_scripting_and_Actor_commands

● It differs from the commands in R21, and R23, 
but there are many similarities.

● GameState.cpp implements 
ApplyGameCommand() which has some 
interesting primitives.

● GameCommand.cpp implements these 
primitives.

http://www.stepmania.com/wiki/Lua_scripting_and_Actor_commands


  

LUA game commands (2)

● The one I was looking for as a kid:

GAMESTATE:ApplyGameCommand('insertcredit')

● Signing a profile using this command and using 
it indeed leads to a free credit.

● The profile loader needs to be invoked, so we 
need to use one credit to get the rest for free.



  

Further escalation

● We would need to break the LUA sandbox.
● We have several flaws, but they are complicated.
● What more do we want anyway?

– We can play for free.
– We can unlock songs.
– We can transfer scores to the machine.
– We do not want to mess it up: the sandbox is nice.



  

Demonstration



  

 

Questions? Kupo?
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