Beatlng up on Andro

Who are we?

* Massimiliano Oldani
» Senior Security Researcher, Immunity, Inc.
* max@immunityinc.com

* Bas Alberts
* Senior Security Researcher, Immunity, Inc.
* bas@immunityinc.com

mailto:max@immunityinc.com
mailto:bas@immunityinc.com

Why pick on Android?

« Starting to out-sell the iPhone
e Decentralized maintenance

« Carriers are responsible for updates (slooooow)
» Solid SDK and NDK

» Source Code available (for the most part)
* Free and usable bugs from public repositories
* Familiar (enough) architecture

* Prevent Skynet from getting online

Android Versions

Android 1.5 3 3.0%
Android 1.6 4 4.8%
Android 2.1 7 29.0%
Android 2.2 8 61.3%
Android 2.3 9 0.7%
Android 2.3.3 10 1.0%
Android 3.0 11 0.2%

http://developer.android.com/resources/dashboard/platform-versions.html

http://developer.android.com/resources/dashboard/platform-versions.html

APPLICATIONS

m SEE—. S . S ——— —_———
Home Contacts Phone Browser
APPLICATION FRAMEWORK
(W TG Ve
Activity Manager Manager Providers
Package Manager Manager “anager I""'I:m:g:r

LIBRARIES

'gn%urk

ANDROID RUNTIME

Core Libraries

D A
—_—

LINUX KERNEL

i . T Bnder (00)
nrﬂ:: it Drvar 0 Driver
: e - Audie S v
Keypad Driver WiFi Driver i M o

*.I-

APPLICATIONS

Home Contacts Phone Browser
APPLICATION FRAMEWORK
Window Content View
Activity Manager Manager Providers System
Tele Resource Location Motification
Fackage anager Hall:::el;r Manager Manager Manager

Surtce Mansger
“opmtiEs
c—

LIBRARIES

AR—
A -
A

Framework

%

ANDROID RUNTIME

Core Libraries

Display
Driver

Keypad Driver

LINUX KERNEL

. Flash Memory
Camera Driver Dri
s ng Audio
WiFi Driver Dirivers

Binder (IPC)

Driver

Power
Management

The Fan

: L]nuxfé"f iSsion model

o Linuwdilarnd
¥

o

° |iclav

. Wellii o

* OpengGk

D

SO)lyjie

ARM Archjﬁtﬂr@; =z=r 1S

ﬁ '

F"_..:‘"i

riPC
ndroid Debug Bridge)

' (Anonymous S M

Vendor specific device driveres *
i,

Android specific devicedrivers

i
Telephony stack

Bionic libc (not POSIX.comp ,

Custom dynamic link

Dalvik VM
Zygote

It is a Linux, sort of

e Kinda

* Android specific
» Binder IPC (¢

- http://elinux.org/Android_Kernel_Features

Android S

* Privilege s
e Every a
t

. P

- ul
* Applicatic
* Application M

* Manually acc

Hardware protection

 ARM TrustZone

* Used to provide tamper free data transactions
* Not used by any Android vendor that we know of

 ARM eXecute-Never (NX bit)

* Used to enforce memory executable permissions

* Not used up until Android 2.3 (updated: 07/17/2011)
- Executable stack
- Executable heap

 Since 2.3 noexec build flags enabled and enforced
on hardware that supports it (e.g. Nexus S)

- Thanks to Nick Kravelich @ Google for pointing this out

Software protection

Android randomize_va_space is setto 1

1: Conservative (stack, mmap base, VDSO, PIE) ... no heap base (brk) randomization

- Regardless: Applications are fork()'d from Zygote anyways, and inherit its ASL
2: Full (stack, mmap base, VDSO, PIE, brk)

Most .so are pre-linked with Apriori (hardcoded load address in an 8
byte “PRE “ record at the end of .so) and can not be relocated

* Ret2libc convenience
Android's Dynamic Linker does not support runtime relocation
ASLR: Android Speed Loathes Randomization

Google + Stanford: new protection schemes based around rebasing pre-linked libraries during Android device updates

http://bojinov.org/professional/wisec2011-mobileasir-paper.pdf

DLMalloc based heap with the associated pointer protection schemes
ProPolice/SSP enabled GCC for native code

http://bojinov.org/professional/wisec2011-mobileaslr-paper.pdf

Application protection

» Applications can be self signed

* No Certificate Authority in place to verify application
publishers

* Jon Oberheide showed how Google can
remotely pull/push apps from/to devices
through the GTalkService

* REMOVE_ASSET Intent 31,112
+ INSTALL_ASSET Intent ‘

« Recent examples include the 50 or so malicious apps that
were pulled from the Android market

* http://jon.oberheide.org/blog/2010/06/25/remote-kill-and-install-on-google-android/

http://jon.oberheide.org/blog/2010/06/25/remote-kill-and-install-on-google-android/

Android Sandboxing

» Based completely on privilege separation
* Enforced by Linux Kernel

 Dalvik VM 1s NOT a sandbox In itself

* Any application can run native code

« That means any application can touch the Kernel
directly (syscalls, ioctls, etc.)

* Fine grained Permission/Capability model
* Per installed Application (Manifest) /7.‘““*
 Per URI (Intent permission flags) N

Dalvik ... it's not Java

e AD
e AD

nlications are written in Java

nlications are built as Dalvik Bytecode (.dex)

* You don't really care ... buuut ...
* Register based, not stack based

* Designed specifically for Android architecture
* Bla bla bla

* Please don't sue Google for having an optimized
JVM

* You do care when auditing Apps r?(()

e dex2jar, smali, dedexer, ...

Android Properties

* The property service

 Manages a system wide configuration registry not
unlike the Windows registry

* Property key:value string pairs are stored in a
shared memory segment: the property space

* Applications retrieve system critical properties
through the property space

- e.g. ro.secure property decides whether or not the ADB
(Android Debug Bridge) daemon should run as root
* |f adbd runs as root (ro.secure == 0), an adb shell drops you to a

root prompt and the device is now essentially jailbroken
* NDK: property_get(), property_set() (libcutils)

» Shell: getprop, setprop

N

Zygote Process Management

« Zygote Is the Dalvik VM master process
responsible for starting and managing all
subsequent Dalvik based Components and
their associated privileges

* Preloads all the commonly needed libraries + Dalvik VM and
fork()'s itself to instantiate new Application processes

* Listens on a socket for messages that indicate
which applications to start and how to start

th em (frameworkslbaselcoreljavalcomland roid/i nternallosIZygoteConnection.java)

* Because all Applications are fork()'d from
Zygote, they inherit the same ASL as Zygote

Application Components

Activities
* Present a screen with a user interface
 Can be shared/started across applications
Services

« Backgrounded capability with no user interface

 Activities can bind to services to interact with them
Content Providers

 Manage (stores, retrieves, provides) Application data

« Data can be on a file system, in an SQLite DB, on the Web, etc.
Broadcast Receivers
* Responds to system-wide broadcast announcements (Intents)

e Screen turned off, Incoming SMS, etc.

For more detail visit: http://http://developer.android.com/guide/topics/fundamentals.htmi

Android Jailbreaking

 Legal under the DMCA

* Large community of people interested in
jailbreaking phones (not just the usual suspects
from the exploit dev scene)

« Some of the more interesting public attacks

against Android come from Sebastian Krahmer
of Team 743C (formerly of Team 7350)

» Focus mostly on Android specific components
for obtaining local root privileges

* Exception: Khramer's udev attacks

N
743C original attacks . I
o et's examine some public exploits

* KillingInTheNameOf

» Exploid

* RageAgainstTheCage
» Zimperlich

743°

KillingInTheNameOf

o Affected Android <= 2.2

* Remapped Android property space to writable

* Vulnerability iIn Ashmem implementation

* Any user can remap shared memory belonging to
init which contains the property space, with
PROT_READ|PROT_WRITE permissions

* Toggled ro.secure property to 0

 ADB Daemon now runs as root
* Physical local root through ADB shell

Exploid

» Affected Android <= 2.1
* As well as regular Linux installs with a vuln udev

e Udev < 1.4.1 did not verify origin of NETLINK
udev event messages

« Sent a NETLINK udev event message that tricked
udev into running an arbitrary binary as root when
triggering a hotplug event

 On Android the udev code lives inside of the init
daemon which runs as root

e Original bug (CVE-2009-1185) died in 2009 but resurfaced in
very similar fashion in the Google udev implementation
(updated: 17/07/2011)

RageAgainstTheCage

o Affected Android <= 2.2

» Setuid() return values not checked in ADBd

« ADBd initially runs as root and setuid()'s to uid shell

e If NPROC resource limit is reached for uid shell,
setuid() from uid root to uid shell will fail

« If setuid() fails, ADBd continues running as root

 If ADBd runs as root, ADB shell also runs as root
* Fork()'s processes as shell user until NPROC is reached

* Restart ADBd (bringing uid shell to NPROC-1) and fork()
again (as uid shell) right before ADBd (as uid root) tries to

setuid() back to uid shell, setuid() fails, Rage wins

ZimperLich

o Affected Android <= 2.2

* Pretty much the same exploit theory as
RageAgainstTheCage only this time abusing
missing setuid() return value checks in Zygote

* Triggered through Dalvik Application
components who's privileges are managed by
Zygote with setuid() calls

 More convenient because It doesn't require a
uid shell prompt

N
Practicality of jailbreaks ‘

* Practical jailbreak use for an attacker
* Physical access required? Not that interesting for

an attacker .@
Jailbreaks
« Zygote vs. Adbd

* Our Initial access to the device Is generally
established remotely

nroug
nroug
nroug

nroug

n the browser
n a malicious market Application
N an attack against the Telephony Stack

n an attack against the SMS/MMS handling

N

Establishing access

 The most interesting target by far is the Android
Browser
* Public vulnerabilities available in WebKit
* Slow to non-existent carrier patch cycles

* No effective ASLR + executable heap makes
remote exploitation reliable

- ARM: care about I/D cache syncing payload-wise

e Second most interesting target is the Android
Market

» Easy to publish malicious Applications
* Turn that order around if you can obtain INSTALL_ASSET capabilities :)

Elevating privileges

 What can we touch as the browser?

* The Kernel
* Privileged System Services through Binder IPC (RPC)
e Zygote

* The entire Android local security model rises
and falls with the (in)security of the Kernel

e Audit Focus ... from easy to hard

- Vendor specific Linux Kernel components
- Android specific Linux Kernel components

- Mainline Linux Kernel

* No Oday needed mostly ... just porting efforts of public vulns
« Stale enough to bypass mmap_min_addr for NULL deref?

Ha

BEing a "ﬁWi | epKit vulnerabiif/AeY=1iSElr)
BEing a ol en(gor specific bug that we can
USENIamihe context ofithe brewser to pop root
. FVWG ot .. but rest easy It only
SITECLS C

ic d-wvlth a very vendor specific
gonfiguration e

. Already plenty ofﬁibreaks out there for 2.1, but we
needed one that from the

& -
Warge ;Eo-to-date T-Mobile 3G Andr%{l; plENE

-_"'I
- gl
L

N

Hacking Dave ... lessons

 Reasonably competent (ahum) attackers with

no specific background in Android hacking can
go from zero to owning Immunity's CEO In the
span of about a week

* Things that helped speed up the process

* Prior knowledge of Linux Kernel internals
* Prior knowledge of use-after-free WebKit attacks
* Prior knowledge of ARM architecture

* Prior knowledge of @daveaitel's Twitter obsession
Team work (Thanks Matias + Agustin!)

....-._1.-"|.1..l
Forr 2 (Rl | PR T e e
..._a.

" ; g B Ay =0 .._.__a.__u_.
i Tk L] L i i T |

r B Eﬁilii&? LTy

O Tl R AT AL

R Y P T

N

Got root, now what?

/data/system/accounts.db
« /data/data/com.android.providers.telephony/databases/mmssms.db

 If you suck as much at SQL as we do, use SQLiteBrowser to grab
auth tokens

* http://sqlitebrowser.sourceforge.net
« To do useful things with oauth tokens use oauth2 for Python

 https://github.com/simplegeo/python-oauth2

* You also get ClientLogin auth tokens for most google data services
e Such as: cp, cl, I2h, mall, youtube
 curl —header “Authorization: GoogleLogin auth=....”

File Edit View Help

D@ 5w e er B R

Database Structure | Browse Data I Execute SQL |

Table: |authtokens j ﬂ MNew Record | Delete Record
_id accounts_id type authtoken
1 40 1 mobilepersonalfeeds D T
2 52 1cp I —————"_
3 60 1 cl [B |
4 73 3 com.twitter.android.cauth.token 2 b
5 74 3 com.twitter.android.cauth.token.secret [g ey
6 90 1 local I
7 135 1 YouTubeUser s
8 136 1 youtube [e
9 408 1 sierra L oy
10 431 1 androidsecure [... 1V
11 435 1 android L e———
12 450 1 Ih2 ..
13 451 1 gaia L. iy |
14 459 1 51D i — 20
15 460 1 L5ID o =
16 461 1 mail e e
4| | 2
|1-1Euuf16 | Goto: |[o

@ S50Lite Database Browser - mmssms.db

Eile Edit View Help

1D | m e e B B E| L2

Database Structure I Browse Data | Execute SOL |

Name Object Type Schema -~
—-5ms table CREATE TABLE sms (_id INTEGER...
- id field INTEGER PRIMARY KEY

~thread id field INTEGER

~ address field TEXT

- PErson field INTEGER

- date field INTEGER

- protocol field INTEGER

-~ read field INTEGER

-~ status field INTEGER

- type field INTEGER

-~ reply_path_present field INTEGER

-~ subject field TEXT

- body field TEXT

- service_center field TEXT

- locked field INTEGER

-~ error_code field INTEGER

- Geen field INTEGER
+-5r_pending table CREATE TABLE sr_pending (refer...
+ threads table CREATE TABLE threads (_id INTE... ~
+ words table CREATE VIRTUAL TABLE words U...
+ words_content table CREATE TABLE 'words_content'(d... |

N

Fun with oauth

 Twitter jacking is a crucial element of publi
humiliation, recycling oauth access keys and
secrets for Twitter Is easy

 Consumer key and consumer secret are unique
to every Twitter application

« Because you are using an access key and
access secret that was negotiated through the
official Twitter Android App, your Tweets look
like they came from “Twitter for Android”

Default

Default Default
oanthsz oanth

SVS
S EER e | hate this web 2.0 crap
ACCESS _SECEET=

Favribes

def oeauth_regiurl. kev., secret,. hitp_nethod=" . post_bodv=Hone,
http headerz=Hone):
consumer = oauth. Consumerkev='"'., secret="'")
Loken = oauth. Tokenikev=kev. secret=szecret)
client = ocauth. Client{consumer, token)
resp. content = client. request(
url.
wethod=http method,
bodv=post_bodw,
headerz=http_headers,
b

return content

22 resp = oauth_reqy

24 ACCESS KET.

25 ACCESS SECEET,

26 http_method='

27 post_bodv="

28 0

29 print repriresp)

a0

"twifterjack.py" J0L, 8BeC [w]

Backdooring options

Application level

« With full Manifest permissions

- Register broadcast receivers for Intents that do something interesting

* Snoop SMS
* Redirect calls
* Make calls for $

With remote root on the phone, just copy your APK to /system/app/ to
have it installed (with any Manifest permissions you want)

* Orjust run 'pm install -t yourapp.apk’

Remotely triggered Intents make it easy to communicate with your
backdoor App even when it is not running, it just has to be installed

* BroadcastReceivers for the win
No Launch Activity in Manifest: no entry in the home Application list H

Backdooring options (cont.)

e System level

 Android Userland

- Modify one of the userland daemons that run as root

- Roll out a customized System Service manager that loads a backdoor
service that you can talk to from apps through Binder IPC

« Simplified: Roll out an app that registers a broadcast receiver for
backdoor-app intents, and has a suid-root worker bin on the system to
handle the requests (or a Kernel Trojan API available to it)

* Linux Kernel
- Runtime patching through /dev/imem or /dev/kmem
- LKM
- Downside: you lose all the convenience of the Application APl hooks
- Keep it simple, supports your userland trojan

N

Backdoor persistence

« Can be tricky on certain devices!

* T-Mobile/HTC G2 eMMC storage write-through protection
makes /system changes non-persistent

 Root + Rootkits are lost on reboots

- But Applications with full permissions are not lost
- root not essential to persist with an interesting backdoor (SMS snooper, GoldDialer, etc.)

* Radio settings S-OFF/S-ON secure flag controls whether or
not the the eMMC is write-through protected

N

Backdoor persistence (cont.)

 Scott Walker's (scotty2) excellent gfree.c
solution vs. G2's eMMC protection

e Get root through whatever means

* Powercycle eMMC to bring it back up in RW mode through
LKM (wpthis.c)

* Install a MMC block request filter in the kernel that removes
the write protection on the hidden radio settings partition
(/dev/block/mmcblkOp7 on the g2)

 [Patch the security flag to 0 (S-OFF) on the radio settings
partition

* https://github.com/tmzt/g2root-kmod/tree/master/scotty2

N

Backdooring ... demo ...

e The Costanza

* A simple example of SMS driven Android backdoor

- Shut up, it sounded cool on paper

- Took a couple of hours to develop with no prior Android dev
experience

* Registers an SMS Intent Broadcast Receiver with a
high priority
- We get the SMS before the System App does

- We can AbortBroadcast() to drop the SMS from the chain

 C&C SMS won't show up on target phone, but WILL show up in their
billing overview

« Simple execute and HTTP POST capabilities
« SMS snooping

1-555-521-5556 @ 5556:Second_2.3 JEE

ERTE

L. & ull B 1:30
15555215556 Hi guy do you
like your phone?
Sent: 1:22PM

Me: xxx:run@cat /proc/ OO

version T
Sent: 1:29PM ﬁ . -& @
[v\

15555215554 Costanza got:
run@cat /proc/version ... plz A6 O
hold for results ...

Sent: 1:29PM

15555215554: Linux version
2.6.29-00261-g0097074-dirty
' (digit@digit.mtv.corp.google.
com) (gcc version 4.4.0 (GCC)) #20
Wed Mar 31 09:54:02 PDT 2010

15555215556: Hi guy do you
like your phone?

Sent: 1:23PM

| Tf';.-" pe to com pose

112 J5-1s 15 s |2 s o |o
o Ju [t Lo [r v Ju oo
o s Jo [o [y [|@
&2 e o ls b o] e
ol

Sent: 1:29PM

| Type to compose d

Conclusions

* Android Is a Linux Frankenstein with an
Interesting attack surface

* You should probably start auditing It
 Applications can have a lot of power
* You don't always need root

* Developing Android Application level backdoors
is easy thanks to a convenient APl and a very
solid SDK

» Get going whilst the getting is still good!

N

References

 Jon Oberhelide, “Android Hax”, Summercon 2010

* http://jon.oberheide.org/files/summerconl0-androidhax-jonoberheide.pdf

* Android Developer's Guide

* http://developer.android.com/guide/index.html

e Sebastian Krahmer, 734C

* http://c-skills.blogspot.com/

* Hristo Bojinov, “Mobile ASLR”, 2011

* http://bojinov.org/professional/wisec2011-mobileaslir-paper.pdf

e Scott Walker, Gfree source

* https://github.com/tmzt/g2root-kmod/tree/master/scotty2

http://jon.oberheide.org/files/summercon10-androidhax-jonoberheide.pdf
http://developer.android.com/guide/index.html
http://c-skills.blogspot.com/
http://bojinov.org/professional/wisec2011-mobileaslr-paper.pdf
https://github.com/tmzt/g2root-kmod/tree/master/scotty2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

